telecomvideos.com
Welcome
Login / Register

Most Popular Articles


  • Optics and Cables Selection for Storage Area Network (SAN)

    Optics and cables are the most important infrastructures of network connectivity. In a storage area network (SAN), switches are used between servers and storage devices. This means that you should make connection with optics and cables between the server and switch, storage and switch as well as the switch and switch. Of course, according to different application environments, you should choose different optics and cables in order to get the best performance. Furthermore, you may need to consider the future expansion of your network. Thus, an economical and effective solution of optics and cables are very necessary.

    Key Factors Influencing Your Decision

    Firstly, there are some key factors which will influence your decision. Thus, you must make sure that what your network really requires. As we mentioned above, an SAN has server, storage device and switches. So, what should we consider in every section of the network?

    1. Server
    Bandwidth: Depending on the application load requirements, customers typically decide whether they want 1GbE, 10GbE, or 40GbE. In some cases, the decision may also be dictated by the type of traffic, e.g. DCB (Data center bridging) requires 10GbE or higher.Cost: Servers claim the highest share of devices deployed in any data center. Choosing a lower cost connectivity option results in a much lower initial deployment cost.Power: In any high density server deployment, a connectivity option which consumes lower power results in much lower OpEx.Distance: Servers are typically connected to a switch over a very short distance, i.e. typically within the same rack or, in some cases, within the same row.Cabling Flexibility: Some customer prefer to make their own copper cables due to variable distance requirement. This requirement limits the choice of connectivity to copper cables only.

     

    2. Storage
    Reliability: Typical storage traffic is very sensitive to loss. Even a minor loss of traffic may result in major impact on application performance.Qualification: Storage vendor qualification or recommendation plays an important role in this decision due to reasons such as customer support, peace of mind, etc.Latency: Any time spent in transition is time taken away from data processing. Reducing transition time results in much faster application performance. The result may have a direct impact on customers' bottom line, e.g. faster processing of online orders.

     

    3. Switch
    Bandwidth: On server facing ports, servers typically dictate the per port bandwidth requirement. However, per port bandwidth requirement for the network facing (switch-to-switch) ports denpends on multiple factors including amount of traffic generated by the servers, oversubscription ratios, fiber limitations, ect.Distance: An inter-switch or switch to router connection could range from a few inches to tens of kilometers. Generally, the price of optics increases as the distance increases.Latency: The network topology and application traffic profile (East-west, HPC (High Performance Computing), computer cluster, etc.) and influence the minimun latency that can be tolerated in the network.

     

    • Server to Switch Connectivity Solution

    • Storage to Switch Connectivity Solution

     

     

    • Switch to Switch Connectivity Solution

     

     COMPUFOX Solutions

    COMPUFOX  offers a comprehensive solution of optics and cables which supports your network from 1GbE to 100GbE. We have a great selection of 1000BASE-T/SX/LX SFP, BiDi SFP, 10GBASE-SR/LR SFP+, DWDM SFP+, whole series 40G QSFP+ optics and cables, as well as the 100G CFP2 and CFP4, etc. which help you solve the cost issue in fiber project. Especially the 40G QSFP+ optics, with the passive optic design, they can be compatible with all the equipment of all major brands. In addition, most of them are ready stock. See Links below:

    Read more »
  • Huawei Completes 5G Key Technology Tests in the Field Trial Sponsored by IMT-2020 5G Promotion Group

    [Shenzhen, China, May 27, 2016] Huawei completed the first phase of key 5G technology tests as a part of a series field trials defined by the IMT-2020 5G Promotion Group. In April 2016, the outdoor macro-cell tests, conducted in Chendu, China, consist of a number of the foundational key enabling technologies and an integrated 5G air-interface. The test results successfully demonstrated that the new 5G air interface technology can effectively improve spectrum efficiency and to meet diverse service requirements for 5G defined by ITU-R.


    Huawei completes 5G key technology tests in 5G field trial

    Strong Promotion for Global Partnership on 5G Technology Innovation and a Global 5G Standard

    Launched by China Academy of Information and Communication Technology (CAICT), the IMT-2020 5G Promotion Group aims to foster a joint effort to promote 5G technology evaluation and field test among the global mobile industry and ecosystem to ensure the successful commercial deployment by 2020. One of the key objectives for IMT-2020 5G Promotion Group is to realize the 5G vision for the enhanced mobile broadband service as well as to create the new capabilities for 5G to enable the IoT and vertical services, this represents the unprecedented technical challenges such as to realize 10Gbps or peak rate 20Gbps user data rate, 100 billion connections, and 1 ms of end-to-end network latency for the 5G air interface.

    Early this year, IMT-2020 5G Promotion Group announced a three phase 5G networks trial plan, spanning from 2016 to 2018, with a first phase test from September 2015 to September 2016. The first phase test is focused on key radio technologies and performance test.

    As one of the core members in the IMT-2020 5G Promotion Group, Huawei actively contributed IMT-2020 5G Promotion Group and 5G technology test. In addition, Huawei established an extensive collaboration with CAICT, China Mobile, China Unicom, and China Telecom in the Chinese operator community to explore the innovative air-interface technologies to achieve best spectral efficiency and massive links capabilities. Huawei’s effort is focused on New Radio (NR) technology, which includes the optimized new air-interface, full-duplex and massive MIMO technologies, these are the enabling technologies to achieve the superior end-user experience for the emerging mobile broadband service such as 4K, 8K and virtual reality and augmented reality.

    Best-in-Class Test Results Using 5G New Air Interface

    The 5G air interface technology has been implemented through three novel foundational technologies, i.e., filtered Orthogonal Frequency Division Multiplexing (F-OFDM), Sparse Code Multiple Access (SCMA) and Polar code to meet 5G requirements and performance targets.

    F-OFDM technology is the basis for creating ultra-flexible air-interface to adaptively fit all the 5G use-case scenarios defined by ITU-R with a single radio technology platform. It allows multiple concurrent radio numerologies and frame structure to deliver very diverse services; F-OFDM can ensure the future-proof for the 5G system to meet emerging innovative services requirements. The test results showed that F-OFDM can increase system throughput by 10% using those free guard bands in LTE system. In addition, F-OFDM supports asynchronous transmission from different users. Test results showed that it will provide 100% higher system throughput compared with that in LTE system in the presence of mixed service on the same carrier frequency with mixed radio numerologies. .

    SCMA is to support massive connections and obtain higher system throughput simultaneously via the joint optimization on sparse SCMA codebook design and multi-dimensional modulation. It can further consider optimization on power allocation among different SCMA layers especially in downlink to improve total system throughput. The test results showed that SCMA is to increase the uplink connection number by 300% and at the same time increased the downlink system throughput up to 80%.

    For Polar code, it allocates information to the highly reliable data locations in the code structure to transmit useful information of user and at the same time it supports channel coding of any code rate with an appropriate code construction to fit any future service requirements. The test results showed that Polar code provided coding gain from 0.5dB to 2.0dB compared with Turbo code used in LTE system.

    System Integration of Innovative 5G Air Interface Technologies

    The flexible system integration of several innovative 5G air-interface technologies, namely, F-OFDM, SCMA and massive MIMO has been verified in the first phase of key 5G technology tests. In the test, multi-user MIMO (MU-MIMO) supported up to 24 users and up to 24 parallel layers transmission on the same time-frequency resources. The test results showed that MU-MIMO can achieve 3.6Gbps cell average throughput using 100MHz system bandwidth, it is almost 10 times of that in LTE baseline system.

    The trial has validated the optimal integration of the above new radio technologies and the capability of flexible 5G air-interface technologies, the trial is also served as a technical re-risk to support the on-going 3GPP standardization work.

    Full Duplex Implemented in the First Phase of 5G Test

    Full Duplex mode has also been tested in the first phase of 5G test. In the initial test stage on Full Duplex, it allows simultaneous transmitting and receiving of data at the base station with three level cascaded technologies, namely, passive analog cancellation, active analog cancellation, and digital cancellation. The test results showed that the Full Duplex can provide self-interference cancellation capability more than 113dB in real world environment and result in a total 90% system throughput gain over the conventional half duplex mode used today.

    Huawei has successfully completed the first phase test of 5G technologies in China. "The trial of 5G technologies in China will be a great contribution to 5G applications in the future.” Dr. Wen Tong, Huawei 5G Chief Scientist emphasized that, "As a member of the IMT-2020 5G Promotion Group, Huawei is pleased to work with CAICT, China Mobile, China Unicom, and China Telecom, and took the initiative to be the first to complete 5G key technologies tests and corresponding system integration test based on our proposed 5G new air interface."

    He also announced the plan of the second phase of 5G test which will focus mainly on the wide coverage, high hotspot capacity, and massive connections with high reliability, low latency with reduced power consumption.

    Read more »
  • T-Mobile becomes number one US smartphone channel

    Written by Scott Bicheno  Telecoms.com

    T-Mobile

    Disruptive US operator T-Mobile has become the leading sales channel for smartphones in the US, according to new research from Counterpoint.

    T-Mobile overtook Verizon to take the number one smartphone sales spot, having been a distant fourth just two years ago. This change is viewed as indicative of a broader change in the way smartphones are being purchased in the US, with the cost of devices increasingly uncoupled from the service contracts and, if needed, paid for via conventional financing arrangements.

    The US market has undergone significant shifts in the power of the different sales channels with the move to unsubsidized plans,” said Neil Shah of Counterpoint. “The growth of T-Mobile through its different ‘Uncarrier’ moves, the removal of subsidies and enticing subscribers with ‘Simple Choice’ & ‘Jump’ plans, has helped the operator to become the top smartphone sales channel in the USA.

    Samsung and Apple together captured almost two-thirds of the total smartphone shipments share at T-Mobile, with Samsung leading. However, it will be an uphill task for T-Mobile to maintain this lead ahead of Verizon and continue to attract millions of subscribers to its network. The move to unsubsidized and unlocked has also boosted demand in the open channel, which continued to contribute close to 10% of the total shipments in Q1 2016.”

    Conterpoint US smartphones slide 2

    US smartphone sales on the whole declined by 4% year-on-year due to the maturity of the market (most people already have a smartphone) and a lengthening on the upgrade cycle. The latter factor will be a direct result of the shift in buying habits as fewer consumers are being prompted to upgrade their subsidized phones by the renewal of their postpaid contracts.

    “The US market decelerated due to softness in Apple iPhone demand and iPhone SE demand not materializing until Q2 2016,” said Jeff Fieldhack of Counterpoint. “Carriers continued to push subscribers to non-subsidy plans as for the first time more than half of the combined subscriber base of the top four carriers are now on non-subsidized plans. This is a significant shift from the subsidy-driven model just ten to twelve quarters ago. This has changed the basis of competition in US mobile landscape.

    “The focus has shifted to creating more value for the consumer, instead of being device-driven. Unsubsidized device sales have educated consumers that flagship smartphones are costly. This has led to a temporary softness in the device upgrade cycle; the in-carrier upgrade run rate continues to be in 5-6% range per quarter. Handset manufacturers will continue to push hardware and marketing limits to entice subscribers to not defer upgrading.”

     

    Read more »
  • 40G QSFP+ Transceiver Modules and DAC/AOC Cables Installation Guide

    To install and remove the transceiver optics in a right way is very necessary to ensure the network to work stably and efficiently. Today, we are going to introduce an installation guide of QSFP transceivers and DAC/AOC cables in 40G network.

    40GbE QSFP+ Transceivers Overview

    40 Gigabit Ethernet (40GbE) aggregation switches are becoming more common in today's data centers. At the heart of the 40GbE network layer is a pair of transceivers connected by a cable. The transceivers are plugged into either network servers or a variety of components including interface cards and switches and connected via the cables such as OM3 and OM4 for multimode application. Additionally DAC (Direct Attach Copper) cables or AOCs (Active Optical Cables) are used for short interconnection as a more cost-effective alternative solution. QSFP+ (Quad Small Form-factor Pluggable Plus) is the most common 40GbE interface type, and also as a high-density 10GbE interface via QSFP+ breakout cables. QSFP+ interfaces a network device (switch, router, media converter or similar device) to a fiber optic or copper cable, supporting data rates from 4x10 Gbps and supports Ethernet, Fibre Channel, InfiniBand and SONET/SDH standards with different data rate options. Compared to CFP (C form-factor pluggable) transceiver modules, QSFP transceiver modules are more compact and more suitable for port-density application. The two basic interface specifications of QSFP+ modules respectively for multimode and single-mode applications are 40GBASE-SR4 and 40GBASE-LR4.

    40GBASE-SR4 QSFP+ Module

    The 40GBASE-SR4 QSFP+ module, conforming to the 802.3ba D3.2 (40GBASE-SR4) standard, provides a 40Gbps optical connection using MPO/MTP® optical connectors. This optical module integrates four data lanes in each direction with 40Gbps aggregate bandwidth and each lane can operate at 10.3125 Gbps. It is used in data centers to interconnect two Ethernet switches with 8 fiber parallel multimode fiber OM3/OM4 cables (transmission distance can be up to 100 meters using OM3 fiber or up to 150 meters using OM4 fiber).

     

    40GBASE-LR4 QSFP+ Module

    The 40GBBASE-LR4 QSFP+ module, conforming to the 802.3ba (40GBASE-LR4) standard, provides a 40Gbps optical connection using LC optical connectors. This optical module integrates four data lanes in each direction with 40Gbps aggregate bandwidth and each lane can operate at 10.3125 Gbps. It is most commonly deployed between data center or IXP sites with single-mode fiber up to 10 km.

     In addition, to satisfy a number of different objectives including support for MMF and SMF compatibility, there are other types of QSFP+ modules offered by different vendors.

    How to Install/Remove QSFP+ Transceivers and DAC/AOC Cables
     
    Preparations

    To protect a QSFP+ module or cable from ESD (electro-static discharge) damage, before installing or removing a QSFP+ module or cable, be remembered that always wear an ESD wrist strap and make sure that it makes good skin contact and is securely grounded (If you are using ESD gloves, wear the wrist strap outside the ESD glove).

    To Install or Remove a QSFP+ Transceiver Module

    There are two types of clasp designed for a QSFP+ transceiver module—plastic clasp or a metallic clasp. Here uses the metallic clasp type as an example.

    To Install a QSFP+ Transceiver Module

    Step 1. Remove the QSFP+ module from its antistatic container and remove the dust covers from the module optical connector.
    Step 2. Remove any rubber dust covers from the port where you are installing the QSFP+ module.
    Step 3. Pivot the clasp of the module up. (Skip this step if the clasp is plastic.)
    Step 4. Align the module with the port in the chassis, as shown in Figure 1.

    Figure 1. Aligning the module with the port
    Figure 1. Aligning the module with the port

    Step 5. Holding the module, gently push in the module until it is firmly seated in the port.(see Figure 2.)

    Figure 2. Install the QSFP+ module to port
    Figure 2. Install the QSFP+ module to port

    Step 6. Immediately attach the patch cord with MPO connector or duplex LC connector to the QSFP+ transceiver module.(see Figure 3.)

    Figure 3. Install the patch cord to the module
    Figure 3. Install the patch cord to the module

    Note: Install the dust plug for the transceiver module if you are not to install an optical fiber into it.

    To Remove a QSFP+ Transceiver Module

    Step 1. Remove the optical fiber if any.
    Step 2. Pivot the clasp of the module down to the horizontal position. (Skip this step if the clasp is plastic.)
    Step 3. Holding the module, gently pull the module out of the port. (Figure 4)
    Step 4. Place the QSFP+ transceiver into an antistatic bag.

    Figure 4. Remove the QSFP+ module
    Figure 4. Remove the QSFP+ module

    To Install or Remove a 40G QSFP+ Cable

    The installation and removal procedures are the same for QSFP+ DAC cables and QSFP+ AOC cables. Here uses a QSFP+ DAC cable as an example:

    To Install a QSFP+ DAC Cable

    Step 1. Align the QSFP+ transceiver module (with the clasp on top) at one end of the cable with the port in the chassis, as shown in Figure 5.
    Step 2. Horizontally and gently push in the module to fully seat it in the port.

    Figure 5. Installing a QSFP+ DAC cable
    Figure 5. Installing a QSFP+ DAC cable

    To remove a QSFP+ DAC Cable

    Step 1. Gently press and release the QSFP+ transceiver module.(see Figure 6.)
    Step 2. Holding the cable, gently pull the clasp on the cable to pull out the transceiver module.

    Figure 6. Removing a QSFP+ DAC cable
    Figure 6. Removing a QSFP+ DAC cable

    To Install or Remove a 40G QSFP+ to 4x10G SFP+ Cable

    40G QSFP+ to 4x10G SFP+ cable combines one 40G QSFP+ module on one end and four 10G SFP+ module on the other end. The installation and removal procedures of 40G QSFP+ connector are introdueced above. Here only introduced the installation and removal of 10G SFP+ module:

    To Install an SFP+ Transceiver Module

    Step 1. Align the module with the SFP+ port, with the golden plating facing the spring tab (see Figure 7.) in the SFP+ port. If the chassis has two rows of ports, the spring tab in a port is on the bottom in the upper row and on the top in the lower row.
    Step 2. Slightly press the module against the spring tab so you can push the module straight into the port.

    Figure 7. Installing an SFP+ transceiver module
    Figure 7. Installing an SFP+ transceiver module

    To Remove an SFP+ Transceiver Module

    Step 1. Press the module with your thumb, as shown by callout 1 in Figure 8.
    Step 2. Gently pull the clasp on the cable to pull out the transceiver module, as shown by callout 2 in Figure 8.

    Figure 8. Removing an SFP+ transceiver module
    Figure 8. Removing an SFP+ transceiver module

    Verifying the installation

    Execute the display transceiver interface command on the device to verify that the transceiver module or DAC/AOC cable is installed correctly. If the transceiver module and DAC/AOC cable information is displayed correctly, the installation is correct. If an error message is displayed, the installation is incorrect or the transceiver optics is not compatible.

    transceiver interface command

    Conclusion

    As 40 GbE are widely deployed, 40G transceiver optics are ubiquitous. A good practice and correct installation are very important for 40G network system, not only to protect the 40G transceiver optics and device from damage, but also to ensure a stable performance for system. In addition, by executing the display transceiver interface command, we can verify whether the installation is correct. Of course, the premise is that the transceiver optics you use is fully compatible with your device. COMPUFOX offers a comprehensive line of high-compatible 40G transceiver optics, such as 40GBASE-SR4 QSFP+, 40GBASE-LR4 QSFP+ and 40G DACs and AOCs with competitive prices. See Links below:

     

    Read more »
  • ARM’s new CPU and GPU will power mobile VR in 2017

     

    ARM, the company that designs the processor architectures used in virtually all mobile devices on the market, has used Computex Taipei 2016 to announce new products that it expects to see deployed in high-end phones next year. The Cortex-A73 CPU and Mali-G71 GPU are designed to increase performance and power efficiency, with a particular view to supporting mobile VR.

    ARM says that its Mali line of GPUs are the most widely used in the world, with over 750 million shipped in 2015. The new Mali-G71 is the first to use the company's third-generation architecture, known as Bifrost. The core allows for 50 percent higher graphics performance, 20 percent better power efficiency, and 40 percent more performance per square mm over ARM's previous Mali GPU. With scaling up to 32 shader cores, ARM says the Mali-G71 can match discrete laptop GPUs like Nvidia's GTX 940M. It's also been designed around the specific problems thrown up by VR, supporting features like 4K resolution, a 120Hz refresh rate, and 4ms graphics pipeline latency.

     

    As for CPUs, ARM is announcing the new Cortex-A73 core, which prioritizes power efficiency. It's up to 30 percent more efficient than the previous Cortex-A72 while offering about 1.3 times the level of peak performance, but ARM has also focused on sustained usage — the A73 offers over twice the performance within its power budget, meaning it doesn't need to be as hasty to slow down to save battery life.

     

    arm slide 2

     

    Although ARM architecture dominates the mobile landscape, there's a good chance you won't see these specific products in your 2017 flagship phone. ARM licenses its architecture and cores separately, meaning companies are free to pick and choose what they like. Apple, for example, licenses ARM architecture but now designs its own custom CPU cores (known as Twister in the most recent A9 processor) and uses PowerVR GPU solutions from Imagination Technologies. Samsung, meanwhile, designs some Exynos processor cores but uses them alongside ARM's Cortex cores and Mali GPU in the international Galaxy S7. And Qualcomm reverted to its own custom Kryo CPU cores in the Snapdragon 820 — which powers the US Galaxy S7 — after using Cortex in the 810.

    All of this is to say that you shouldn't take the performance laid out here by ARM as a benchmark for your next phone, because it'll all depend on how the manufacturers choose to implement the technology. But the new Cortex and Mali products do demonstrate that mobile technology continues to advance in terms of power and efficiency, and that it's adapting to new challenges such as VR.

    ARM expects chips to move into production at the end of the year and appear in shipping devices in early 2017.

    Read more »
RSS