telecomvideos.com
Welcome
Login / Register

Most Popular Articles


  • ARM’s new CPU and GPU will power mobile VR in 2017

     

    ARM, the company that designs the processor architectures used in virtually all mobile devices on the market, has used Computex Taipei 2016 to announce new products that it expects to see deployed in high-end phones next year. The Cortex-A73 CPU and Mali-G71 GPU are designed to increase performance and power efficiency, with a particular view to supporting mobile VR.

    ARM says that its Mali line of GPUs are the most widely used in the world, with over 750 million shipped in 2015. The new Mali-G71 is the first to use the company's third-generation architecture, known as Bifrost. The core allows for 50 percent higher graphics performance, 20 percent better power efficiency, and 40 percent more performance per square mm over ARM's previous Mali GPU. With scaling up to 32 shader cores, ARM says the Mali-G71 can match discrete laptop GPUs like Nvidia's GTX 940M. It's also been designed around the specific problems thrown up by VR, supporting features like 4K resolution, a 120Hz refresh rate, and 4ms graphics pipeline latency.

     

    As for CPUs, ARM is announcing the new Cortex-A73 core, which prioritizes power efficiency. It's up to 30 percent more efficient than the previous Cortex-A72 while offering about 1.3 times the level of peak performance, but ARM has also focused on sustained usage — the A73 offers over twice the performance within its power budget, meaning it doesn't need to be as hasty to slow down to save battery life.

     

    arm slide 2

     

    Although ARM architecture dominates the mobile landscape, there's a good chance you won't see these specific products in your 2017 flagship phone. ARM licenses its architecture and cores separately, meaning companies are free to pick and choose what they like. Apple, for example, licenses ARM architecture but now designs its own custom CPU cores (known as Twister in the most recent A9 processor) and uses PowerVR GPU solutions from Imagination Technologies. Samsung, meanwhile, designs some Exynos processor cores but uses them alongside ARM's Cortex cores and Mali GPU in the international Galaxy S7. And Qualcomm reverted to its own custom Kryo CPU cores in the Snapdragon 820 — which powers the US Galaxy S7 — after using Cortex in the 810.

    All of this is to say that you shouldn't take the performance laid out here by ARM as a benchmark for your next phone, because it'll all depend on how the manufacturers choose to implement the technology. But the new Cortex and Mali products do demonstrate that mobile technology continues to advance in terms of power and efficiency, and that it's adapting to new challenges such as VR.

    ARM expects chips to move into production at the end of the year and appear in shipping devices in early 2017.

    Read more »
  • LSZH Fiber Optic Cables Tutorial

    Since the 1970s, the wire and cable industry has been using low-smoke, low-halogen materials in a number of applications. The objective was to create a wire and cable jacketing that was not only flame retardant but also did not generate dense, obscuring smoke and toxic or corrosive gases. Several notable fires over the years (such as the King's Cross Fire that killed 32 people in London's underground subway in 1987) increased the awareness of the role that wire and cable jacketing plays in a fire and contributed to a greater adoption of Low-Smoke Zero-Halogen (LSZH) cables.

    With an increase in the amount of cable found in residential, commercial and industrial applications in recent years, there is a greater fuel load in the event of a fire. Wire and cable manufacturers responded by developing materials that had a high resistance to fire while maintaining performance. Low-smoke, zero-halogen compounds proved to be a key materials group that delivered enhanced fire protection performance. Today, LSZH cables are being used in applications beyond the traditional transit, shipboard, military and other confined-space applications. This tutorial is provided to help you learn more about the LSZH fiber optic cables.

    What is LSZH Fiber Optic Cable?

    LSZH Fiber Optic Cable is a kind of fiber optic cable of which the jacket and insulation material are made of special LSZH materials. When these cables come in contact with a flame very little smoke is produced making this product ideal for applications where many people are confined in a certain place (office buildings, train stations, airports, etc.). While a fire may be very harmful in a building, the smoke can cause more damage to people trying to locate exits and inhalation of smoke or gases.

     

     



    Fiber optic cable insulation and jacket made from LSZH materials are free of halogenated materials like Fluorine (F), Chlorine (Cl), Bromine (Br), Iodine (I) and Astatine (At), which are reported to be capable of being transformed into toxic and corrosive matter during combustion or decompositions in landfills.

    The most prominent characteristic of LSZH fiber optic cable is safety. LSZH fiber optic cables are used in public spaces like train and subway stations, airports, hospitals, boats and commercial buildings, where toxic fumes would present a danger in the event of a fire. Similarly, low-smoke property is also helpful. More people in fires die from smoke inhalation than any other cause. Using LSZH fiber optic cables which release low smoke and zero halogenated materials in these places would be really important to the safty of people.

    Applications of LSZH Fiber Optic Cables

    There is no doubt that the amount of fiber optic cables installed in buildings has been increasing as data communication proliferated. Central office telecommunication facilities were some of the first places that LSZH cables became common due to the large relative fuel load represented by wire and cable.

    Public Spaces like train stations, hospitals, school, high buidings and commercial centers where the pretection of people and equipment from toxic and corrosive gases is critical should apply LSZH fiber optic cable for the safty of people.

    Data Centers contain large amounts of cables, and are usually enclosed spaces with cooling systems that can potentially disperse combustion byproducts through a large area. In industrial facilities, the relative fuel load of cables will not be at the same level. Other materials burning may also contribute greater amounts of dangerous gases that outweigh the effect of the cables. There have been notable fires where cables burning contributed to corrosion (the Hinsdale Central Office fire is a famous example), but in some instances, better fire response techniques could have prevented this damage.

    Nuclear Industry is another area where LSZH cables have been and will be used in the future. Major cable manufacturers have been producing LSZH cables for nuclear facilities since the early 1990s. The expected construction of new nuclear plants in the U.S. in coming years will almost certainly involve some LSZH cable.

    One of the most important things to understand about LSZH fiber optic cable is that no two products are the same and that there are many factors that will define the suitability of the final product to its application. In fact, research done by a major pulling lubricant supplier tested 27 LSZH compounds and found a huge variation in physical properties. So even using material that meets the base requirements of one of the many specifications available may not result in the best material for the application. Understanding the goals, results and limits of these tests are key to finding the right product. In any case, the trend to consider environmental concerns with a greater weight relative to performance has increased and it can be generally stated that there is an enlarging market for fiber optic cables that can be demonstrated to be environmentally friendly.

    Conclusion

    When selecting or designing a fiber optic cable for any application, the operating enviroments where the fiber optic cable will be used, whether extreme or not, must be considered along with availability, performance, and price, among other things. And when the safety of humans and the enviroment is a consideration, along with high-performance and capability, then LSZH fiber optic cables are what you must specify.

    Warm Tips: When choosing LSZH fiber optic cables, factors such as the environment and price should be considered. An environmental factor such as the temperature of the installation could reduce the flexibility of the cable. Will the application be in an open area or confined? Will other flammable material be present? LSZH fiber optic cables also tend to be higher in cost. 

    Read more »
  • MPO/MTP Solutions for High Density Applications

    As the bandwidth demands grow rapidly, data centers have to achieve ultra-high density in cabling to accommodate all connections. MPO/MTP technology with multi-fiber connectors offers ideal conditions for high-performance data networks in data centers. This article will introduce information about MPO/MTP solutions, such as MPO/MTP trunk cable, MPO/MTP harness cable and MPO/MTP cassettes.

    MTP/MPO Trunk Cable

    MTP/MPO trunk cables are terminated with the MTP/MPO connectors (as shown in the following figure). Trunk cables are available with 12, 24, 48 and 72 fibers. MTP/MPO trunk cables are designed for data center applications. The plug and play solutions uses micro core cable to maximize bend radius and minimize cable weight and size. Besides, MTP/MPO trunk cables also have the following advantages:

    • Saving installation time–With the special plug and play design, MTP/MPO trunk cables can be incorporated and immediately plugged in. It greatly helps reduce the installation time.
    • Decreasing cable volume–MTP/MPO trunk cables have very small diameters, which decrease the cable volume and improve the air-conditioning conditions in data centers.
    • High quality–MTP/MPO trunk cables are factory pre-terminated, tested and packed along with the test reports. These reports serve as long-term documentation and quality control.

    Trunk-Cable

    MPO/MTP Harness Cable

    MPO/MTP harness cable (as shown in the following figure) is also called MPO/MTP breakout cable or MPO/MTP fan-out cable. This cable has a single MTP connector on one end that breaks out into 6 or 12 connectors (LC, SC, ST, etc.). It’s available in 4, 6, 8, or 12 fiber ribbon configurations with lengths about 10, 20, 30 meters and other customized lengths. MPO/MTP harness cable is designed for high density applications with required high performance. It’s good to optimize network performance. Other benefits are shown as below:

    • Saving space–The active equipment and backbone cable is good for saving space.
    • Easy deployment–Factory terminated system saves installation and network reconfiguration time.
    • Reliability–High standard components are used in the manufacturing process to guarantee the product quality.

    Harness-Cable

    MPO/MTP Cassette

    MPO/MTP cassette modules provide secure transition between MPO/MTP and LC or SC discrete connectors. They are used to interconnect MPO/MTP backbones with LC or SC patching. MPO/MTP Cassettes are designed to reduce installation time and cost for an optical network infrastructure in the premises environment. The modular system allows for rapid deployment of high density data center infrastructure

    Cassette

    as well as improved troubleshooting and reconfiguration during moves, addons, and changes. Aside from that, it has other advantages:

    • MPO/MTP interface–MPO/MTP components feature superior optical and mechanical properties.
    • Optimized performance–Low insertion losses and power penalties in tight power budget, high-speed network environments.
    • High density–12 or 24 fiber cassettes can be mounted in 1U scaling up to 72 or in 3U scaling up to 336 discrete LC connectors.

    The above shows that the MPO/MTP system is a good solution for data center requirements. This high density, scalable system is designed to enable thousands of connections.

    Read more »
  • 40G QSFP+ Transceiver Modules and DAC/AOC Cables Installation Guide

    To install and remove the transceiver optics in a right way is very necessary to ensure the network to work stably and efficiently. Today, we are going to introduce an installation guide of QSFP transceivers and DAC/AOC cables in 40G network.

    40GbE QSFP+ Transceivers Overview

    40 Gigabit Ethernet (40GbE) aggregation switches are becoming more common in today's data centers. At the heart of the 40GbE network layer is a pair of transceivers connected by a cable. The transceivers are plugged into either network servers or a variety of components including interface cards and switches and connected via the cables such as OM3 and OM4 for multimode application. Additionally DAC (Direct Attach Copper) cables or AOCs (Active Optical Cables) are used for short interconnection as a more cost-effective alternative solution. QSFP+ (Quad Small Form-factor Pluggable Plus) is the most common 40GbE interface type, and also as a high-density 10GbE interface via QSFP+ breakout cables. QSFP+ interfaces a network device (switch, router, media converter or similar device) to a fiber optic or copper cable, supporting data rates from 4x10 Gbps and supports Ethernet, Fibre Channel, InfiniBand and SONET/SDH standards with different data rate options. Compared to CFP (C form-factor pluggable) transceiver modules, QSFP transceiver modules are more compact and more suitable for port-density application. The two basic interface specifications of QSFP+ modules respectively for multimode and single-mode applications are 40GBASE-SR4 and 40GBASE-LR4.

    40GBASE-SR4 QSFP+ Module

    The 40GBASE-SR4 QSFP+ module, conforming to the 802.3ba D3.2 (40GBASE-SR4) standard, provides a 40Gbps optical connection using MPO/MTP® optical connectors. This optical module integrates four data lanes in each direction with 40Gbps aggregate bandwidth and each lane can operate at 10.3125 Gbps. It is used in data centers to interconnect two Ethernet switches with 8 fiber parallel multimode fiber OM3/OM4 cables (transmission distance can be up to 100 meters using OM3 fiber or up to 150 meters using OM4 fiber).

     

    40GBASE-LR4 QSFP+ Module

    The 40GBBASE-LR4 QSFP+ module, conforming to the 802.3ba (40GBASE-LR4) standard, provides a 40Gbps optical connection using LC optical connectors. This optical module integrates four data lanes in each direction with 40Gbps aggregate bandwidth and each lane can operate at 10.3125 Gbps. It is most commonly deployed between data center or IXP sites with single-mode fiber up to 10 km.

     In addition, to satisfy a number of different objectives including support for MMF and SMF compatibility, there are other types of QSFP+ modules offered by different vendors.

    How to Install/Remove QSFP+ Transceivers and DAC/AOC Cables
     
    Preparations

    To protect a QSFP+ module or cable from ESD (electro-static discharge) damage, before installing or removing a QSFP+ module or cable, be remembered that always wear an ESD wrist strap and make sure that it makes good skin contact and is securely grounded (If you are using ESD gloves, wear the wrist strap outside the ESD glove).

    To Install or Remove a QSFP+ Transceiver Module

    There are two types of clasp designed for a QSFP+ transceiver module—plastic clasp or a metallic clasp. Here uses the metallic clasp type as an example.

    To Install a QSFP+ Transceiver Module

    Step 1. Remove the QSFP+ module from its antistatic container and remove the dust covers from the module optical connector.
    Step 2. Remove any rubber dust covers from the port where you are installing the QSFP+ module.
    Step 3. Pivot the clasp of the module up. (Skip this step if the clasp is plastic.)
    Step 4. Align the module with the port in the chassis, as shown in Figure 1.

    Figure 1. Aligning the module with the port
    Figure 1. Aligning the module with the port

    Step 5. Holding the module, gently push in the module until it is firmly seated in the port.(see Figure 2.)

    Figure 2. Install the QSFP+ module to port
    Figure 2. Install the QSFP+ module to port

    Step 6. Immediately attach the patch cord with MPO connector or duplex LC connector to the QSFP+ transceiver module.(see Figure 3.)

    Figure 3. Install the patch cord to the module
    Figure 3. Install the patch cord to the module

    Note: Install the dust plug for the transceiver module if you are not to install an optical fiber into it.

    To Remove a QSFP+ Transceiver Module

    Step 1. Remove the optical fiber if any.
    Step 2. Pivot the clasp of the module down to the horizontal position. (Skip this step if the clasp is plastic.)
    Step 3. Holding the module, gently pull the module out of the port. (Figure 4)
    Step 4. Place the QSFP+ transceiver into an antistatic bag.

    Figure 4. Remove the QSFP+ module
    Figure 4. Remove the QSFP+ module

    To Install or Remove a 40G QSFP+ Cable

    The installation and removal procedures are the same for QSFP+ DAC cables and QSFP+ AOC cables. Here uses a QSFP+ DAC cable as an example:

    To Install a QSFP+ DAC Cable

    Step 1. Align the QSFP+ transceiver module (with the clasp on top) at one end of the cable with the port in the chassis, as shown in Figure 5.
    Step 2. Horizontally and gently push in the module to fully seat it in the port.

    Figure 5. Installing a QSFP+ DAC cable
    Figure 5. Installing a QSFP+ DAC cable

    To remove a QSFP+ DAC Cable

    Step 1. Gently press and release the QSFP+ transceiver module.(see Figure 6.)
    Step 2. Holding the cable, gently pull the clasp on the cable to pull out the transceiver module.

    Figure 6. Removing a QSFP+ DAC cable
    Figure 6. Removing a QSFP+ DAC cable

    To Install or Remove a 40G QSFP+ to 4x10G SFP+ Cable

    40G QSFP+ to 4x10G SFP+ cable combines one 40G QSFP+ module on one end and four 10G SFP+ module on the other end. The installation and removal procedures of 40G QSFP+ connector are introdueced above. Here only introduced the installation and removal of 10G SFP+ module:

    To Install an SFP+ Transceiver Module

    Step 1. Align the module with the SFP+ port, with the golden plating facing the spring tab (see Figure 7.) in the SFP+ port. If the chassis has two rows of ports, the spring tab in a port is on the bottom in the upper row and on the top in the lower row.
    Step 2. Slightly press the module against the spring tab so you can push the module straight into the port.

    Figure 7. Installing an SFP+ transceiver module
    Figure 7. Installing an SFP+ transceiver module

    To Remove an SFP+ Transceiver Module

    Step 1. Press the module with your thumb, as shown by callout 1 in Figure 8.
    Step 2. Gently pull the clasp on the cable to pull out the transceiver module, as shown by callout 2 in Figure 8.

    Figure 8. Removing an SFP+ transceiver module
    Figure 8. Removing an SFP+ transceiver module

    Verifying the installation

    Execute the display transceiver interface command on the device to verify that the transceiver module or DAC/AOC cable is installed correctly. If the transceiver module and DAC/AOC cable information is displayed correctly, the installation is correct. If an error message is displayed, the installation is incorrect or the transceiver optics is not compatible.

    transceiver interface command

    Conclusion

    As 40 GbE are widely deployed, 40G transceiver optics are ubiquitous. A good practice and correct installation are very important for 40G network system, not only to protect the 40G transceiver optics and device from damage, but also to ensure a stable performance for system. In addition, by executing the display transceiver interface command, we can verify whether the installation is correct. Of course, the premise is that the transceiver optics you use is fully compatible with your device. COMPUFOX offers a comprehensive line of high-compatible 40G transceiver optics, such as 40GBASE-SR4 QSFP+, 40GBASE-LR4 QSFP+ and 40G DACs and AOCs with competitive prices. See Links below:

     

    Read more »
  • The Composition and Classification of Fiber Optic Cables

    To satisfy optical, mechanical and environmental performances and specifications, fiber optic cable was born. The fiber optic cable uses one or more fibers that placed in the sheath as the transmission medium. Accompanied by the continuous advancement of network technology, fiber optic cable constantly participates in the construction of telecommunications networks, the construction of the national information highway, Fiber To The Home (FTTH) and other occasions for large-scale use. Although fiber optic cable is still more expensive than other types of cable, it's favored for today's high-speed data communications because it eliminates the problems of twisted-pair cable and so fiber optic cable is still a good choice for people. But how to really get a good performance, state-of-the-art products, we need to understand some basics to identify the types of fiber optic cables.

    Composition

    Fiber optic cable consists of the core, the cladding and the coating. The core is a cylindrical rod of dielectric material. Dielectric material conducts no electricity. Light propagates mainly along the core of the fiber. The core is generally made of glass. The core is described as having a radius of (a) and an index of refraction n1. The core is surrounded by a layer of material called the cladding. Even though light will propagate along the fiber core without the layer of cladding material, the cladding does perform some necessary functions. (The basic structure of an optical fiber is shown in the following figure.)

     

    Structure: Core: This central section, made of silica, is the light transmitting region of the fiber.Cladding: It is the first layer around the core. It is also made of silica, but not with the same composition as the core. This creates an optical wave guide which confines the light in the core by total reflection at the core-cladding interface.Coating: It is the first non-optical layer around the cladding. The coating typically consists of one or more layers of a polymer that protect the silica structure against physical or environmental damage.Strengthening Fibers: These components help protect the core against crushing forces and excessive tension during installation. The materials can range from Kevlar to wire strands to gel-filled sleeves.Cable Jacket: This is the outer layer of any cable. Most fiber optic cables have an orange jacket, although some may be black or yellow. The jacket material is application specific. The cable jacket material determines the mechanical robustness, aging due to UV radiation, oil resistance, etc.

     

    Jacket Material: PolyEthylene (PE): PE (black color) is the standard jacket material for outdoor fiber optic cables. PE has excellent moisture- and weather-resistance properties. It has very stable dielectric properties over a wide temperature range. It is also abrasion-resistant.PolyVinyl Chloride (PVC): PVC is the most common material for indoor cables, however it can also be used for outdoor cables. It is flexible and fire-retardant. PVC is more expensive than PE.PolyVinyl DiFluoride (PVDF): PVDF is used for plenum cables because it has better fire-retardant properties than PE and produces little smoke.Low Smoke Zero Halogen (LSZH) Plastics: LSZH plastics are used for a special kind of cable called LSZH cables. They produce little smoke and no toxic halogen compounds. But they are the most expensive jacket material. 

     

    Fiber Size

    The size of the optical fiber is commonly referred to by the outer diameter of its core, cladding and coating. Example: 50/125/250 indicates a fiber with a core of 50 microns, cladding of 125 microns, and a coating of 250 microns. The coating is always removed when joining or connecting fibers. A micron (µm) is equal to one-millionth of a meter. 25 microns are equal to 0.0025 cm. (A sheet of paper is approximately 25 microns thick).

     

    Classification

    Besides the basics, Fiber optic cables can be classified by other ways.

    Transmission Mode:
    • Multi-Mode Fiber (MMF) Cable: Center glass core is coarse (50 or 62.5 µm). It can transmit a variety of patterns of light. However, because its dispersion is large, which limits the frequency of the transmitted digital signal, and with increasing distance, the situation will be more serious. For example, 600Mb/km of 2km fibers provide the bandwidth of only 300 Mbps. Therefore, MMF cable's transmission distance is relatively short, generally only a few kilometers. General MMF patch cables are in orange, also some are gray, joints and protection are beige or black. 
    • Single-Mode Fiber SMF Cable: Center glass core is relatively fine (core diameter is generally 9 or 10 µm), only one mode of light transmission. Therefore, the dispersion is very small, suitable for remote communication, but it plays a major role in the chromatic dispersion, so that SMF cable has a higher stability requirement to the spectral width of the light source, just as narrower spectrum width, better stability. General SMF patch cables are in yellow, with joints and cases in blue.

     

    Transmission Way:
    • Simplex Cable: Single strand of fiber surrounded by a 900µm buffer then a layer of Kevlar and finally the outer jacket. Available in 2 mm or 3 mm and plenum or riser jacket. Plenum is stronger and made to share in fire versus riser is made to melt in fire. Riser cable is more flexible.
    • Duplex Cable: Two single strands of fiber optic cable attached at the center. Surrounded by a 900µm buffer then a layer of Kevlar and finally the outer jacket. In data communications, the simultaneous operation of a circuit in both directions is known as full duplex; if only one transmitter can send at a time, the system is called half duplex.

     

    Cable Core Structure:
    • Central Tube Cable: Fiber, optical fiber bundles or fiber optic cable with no stranding directly into the center position.
    • Stranded Tube Cable: A few dozens or more root fiber or fiber tape unit helically stranded around the central strength member (S twist or SZ twisted) into one or more layers of fiber optic cable.
    • Skeleton After Tube Cable: Fiber or fiber after spiral twisted placed into the plastic skeleton cable slot.

     

    Fiber Road Laying:
    • Aerial Cable: Aerial cables are for outside installation on poles. They can be lashed to a messenger or another cable (common in CATV) or have metal or aramid strength members to make them self supporting. The cable shown has a steel messenger for support. It must be grounded properly. A widely used aerial cable is optical power ground wire which is a high voltage distribution cable with fiber in the center. The fiber is not affected by the electrical fields and the utility installing it gets fibers for grid management and communications. This cable is usually installed on the top of high voltage towers but brought to ground level for splicing or termination. 
    • Direct-Buried Cables:
      • Armored Cable: Armored cable is used in direct-buried outside plant applications where a rugged cable is needed and/or rodent resistance. Armored cable withstands crush loads well, needed for direct burial applications. Cable installed by direct burial in areas where rodents are a problem usually have metal armoring between two jackets to prevent rodent penetration. Another application for armored cable is in data centers, where cables are installed underfloor and one worries about the fiber cable being crushed. Armored cable is conductive, so it must be grounded properly. 
      • Breakout Cable: Breakout cable is a favorite where rugged cables are desirable or direct termination without junction boxes, patch panels or other hardware is needed. It is made of several simplex cables bundled together inside a common jacket. It has a strong, rugged design, but is larger and more expensive than the distribution cables. It is suitable for conduit runs, riser and plenum applications. It's perfect for industrial applications where ruggedness is needed. Because each fiber is individually reinforced, this design allows for quick termination to connectors and does not require patch panels or boxes. Breakout cable can be more economic where fiber count is not too large and distances are not too long, because it requires so much less labor to terminate.
    • Submarine Cable: Submarine cable is the cable wrapped with insulating materials, laying at the bottom of the sea, to set up a telecom transmission between countries.

     

    Cable State. Based on 900µm tight buffered fiber and 250µm coated fiber there are two basic types of fiber optic cable constructions:
    • Tight Buffered Cable: Multiple color coded 900µm tight buffered fibers can be packed tightly together in a compact cable structure, an approach widely used indoors, these cables are called tight buffered cables. Tight buffered cables are used to connect outside plant cables to terminal equipment, and also for linking various devices in a premises network. Multi-fiber tight buffered cables often are used for intra-building, risers, general building and plenum applications. Tight buffered cables are mostly built for indoor applications, although some tight buffered cables have been built for outdoor applications too.
    • Loose Tube Cable: On the other hand multiple (up to 12) 250µm coated fibers (bare fibers) can be put inside a color coded, flexible plastic tube, which usually is filled with a gel compound that prevents moisture from seeping through the hollow tube. Buffer tubes are stranded around a dielectric or steel central member. Aramid yarn are used as primary strength member. Then an outer polyethylene jacket is extruded over the core. These cables are called loose tube cables. Loose tube structure isolates the fibers from the cable structure. This is a big advantage in handling thermal and other stresses encountered outdoors, which is why most loose tube fiber optic cables are built for outdoor applications. Loose-tube cables typically are used for outside-plant installation in aerial, duct and direct-buried applications. 

     

    Environment & Situation:
    • Indoor Cable: Such as distribution cables. Distribution cable is the most popular indoor cable, as it is small in size and light in weight. They contain several tight-buffered fibers bundled under the same jacket with Kevlar strength members and sometimes fiberglass rod reinforcement to stiffen the cable and prevent kinking. These cables are small in size, and used for short, dry conduit runs, riser and plenum applications. The fibers are double buffered and can be directly terminated, but because their fibers are not individually reinforced, these cables need to be broken out with a "breakout box" or terminated inside a patch panel or junction box to protect individual fibers.
    • Outdoor Cable: Outdoor fiber cable delivers outstanding audio, video, telephony and data signal performance for educational, corporate and government campus applications. With a low bending radius and lightweight feature, this cable is suitable for both indoor and outdoor installations. These are available in a variety of configurations and jacket types to cover riser and plenum requirements for indoor cables and the ability to be run in duct, direct buried, or aerial/lashed in the outside plant.

    To purchase your fiber cables, please click link below:

    Fiber Patch Cables

     

    Read more »
RSS