telecomvideos.com
Welcome
Login / Register

Most Popular Articles


  • Fiber Optic Overview

    Fiber Optic Communication - The Future Of Networking & Data Transmission

    Fiber optic communication is a method of transmitting information from one place to another by sending pulses of light through an optical fiber. The light forms an electromagnetic carrier wave that is modulated to carry information.

    First developed in the 1970s, fiber-optic communication systems have revolutionized the telecommunications industry and have played a major role in the advent of the Information Age. Because of its advantages over electrical transmission, optical fibers have largely replaced copper wire communications in core networks. Optical fiber is used by many telecommunications companies to transmit telephone signals, Internet communication, and cable television signals. Researchers have reached internet speeds of over 100 petabits per second using fiber-optic communication.

    Fiber's advantages has led to its use as the backbone of all of today's communications, telecom, Internet, CATV, etc. - even wireless, where towers are connected on fiber and antennas are using fiber up the towers.

    Fiber Communication Example

     

    Optical Fiber - The Better Solution

    Fiber vs. Copper. Fiber is the better solution!

    This photo from the infancy of fiber optics (to the right) was used to illustrate that one tiny optical fiber could carry more communications signals than a giant copper cable. Today one single mode fiber could carry the same amount of communications as 1000 of those old copper cables!

    Fiber offers thousands of times more bandwidth than copper cables and can go more than 1000 times further before needing repeaters - both of which contribute to the immense economic advantage of fiber optics over copper. You can do a similar analysis for using wireless transmission also, but wireless is limited by the available wireless spectrum which is overcrowded because of everyone's desire to use more mobile devices.

    Why Convert From Copper Cable To Fiber Optic Cable?

    If you need some convincing before you make your first fiber optic cable purchase keep the following facts in mind.

    CheckOptical Fiber - Much More Efficient & Secure

    Fiber optic cable operates much more efficiently and is more secure than traditional copper cabling. Fiber can transmit far more information over greater distance and with a higher clarity while offering a more secure connection. Fiber optic cable is resistant to electromagnetic interference and generates no radiation of its own. This point is important in locations where high levels of security must be maintained. Copper wire radiates energy that can be monitored. In contrast, taps in  Fiber optic cable  Fiber  are easily detected. Copper cable, is also subject to problems with attenuation, capacitance, and crosstalk.

    CheckOptical Fiber - Does Not Require Grounding

    Since fiber is made of glass, which is a bad electrical conductor, it does not require grounding and shields itself from other electrical interference. Fiber cables can be run near electrical cables without fear that it will weaken or interrupt the signal.

    CheckOptical Fiber - Corrosion Resistant

    Fiber optic cable does not corrode and is not as sensitive to water or chemicals. This means you can safely run fiber cable in direct contact with dirt or in close proximity to chemicals (with the proper outer jacket materials).

    CheckOptical Fiber - The Safer Choice

    Since fiber is not a good conductor of electricity, an installer or user will be safe from electrocution if there is a break in the outer jacket and the fiber is exposed.

     

    How Fiber Optic Communication Works

    The process of communicating using fiber-optics involves the following basic steps: Creating the optical signal involving the use of a transmitter, relaying the signal along the fiber, ensuring that the signal does not become too distorted or weak, receiving the optical signal, and converting it into an electrical signal.

    Fiber (or fibre) consists of a strand of pure glass a little larger than a human hair. Fiber optic cable employs photons and pulsing laser light for the transmission of digital signals. Photons pass through the glass with negligible resistance. As light passes through the cable, its rays bounce off the cladding in different ways as shown below. The optic core of fiber optic cable is pure silicon dioxide. The electronic 1s and 0s of computers are converted to optically coded 1s and 0s. A light-emitting diode on one end of the cable then flashes those signals down the cable. At the other end, a simple photodetector collects the light and converts it back to electrical signals for transmission over copper cable networks.

    Fiber light source and transmission illustartion.

    Step index multimode was the first fiber design but is too slow for most uses, due to the dispersion caused by the different path lengths of the various modes. Step index fiber is rare - only POF uses a step index design today.

    Graded index multimode fiber uses variations in the composition of the glass in the core to compensate for the different path lengths of the modes. It offers hundreds of times more bandwidth than step index fiber - up to about 2 gigahertz.

    Singlemode fiber shrinks the core down so small that the light can only travel in one ray. This increases the bandwidth to almost infinity - but it's practically limited to about 100,000 gigahertz - that's still a lot!

     

    Optic Fiber Cable Construction

    Optic Fiber Cable Structure.

     

    Optical fiber consists of a core and a cladding layer, selected for total internal reflection due to the difference in the refractive index between the two. In practical fibers, the cladding is usually coated with a layer of acrylate polymer or polyimide. This coating protects the fiber from damage but does not contribute to its optical waveguide properties.

    Individual coated fibers (or fibers formed into ribbons or bundles) then have a tough resin buffer layer and/or core tube(s) extruded around them to form the cable core. Several layers of protective sheathing, depending on the application, are added to form the cable.

    Rigid fiber assemblies sometimes put light-absorbing ("dark") glass between the fibers, to prevent light that leaks out of one fiber from entering another. This reduces cross-talk between the fibers, or reduces flare in fiber bundle imaging applications.

    A “dopant” is added to the core to actually make it less pure than the cladding. This changes the way the core transmits light. Because the cladding has different light properties than the core, it tends to keep the light within the core. Because of these properties, fiber optic cable can be bent around corners and can be extended over distances of up to 100 miles.

    A typical laser transmitter can be pulsed billions of times per second. In addition, a single strand of glass can carry light in a number of wavelengths (colors), meaning that the data-carrying capacity of fiber optic cable is potentially thousands of times greater than copper cable.

     

    Types Of Fiber Optic Cable

    • Plastic cable, which works only over a few meters, is inexpensive and works with inexpensive components.
    • Plastic-coated silica cable offers better performance than plastic cable at a little more cost.
    • Single-index monomode fiber cable is used to span extremely long distances. The core is small and provides high bandwidth at long distances. Lasers are used to generate the light signal for single-mode cable. This cable is the most expensive and hardest to handle, but it has the highest bandwidths and distance ratings.
    • Step-Index multimode cable has a relatively large diameter core with high dispersion characteristics. The cable is designed for the LAN environment and light is typically generated with a LED (light-emitting diode).
    • Graded-index multimode cable has multiple layers of glass that contain dispersions enough to provide increases in cable distances.

    Cable specifications list the core and cladding diameters as fractional numbers. For example, the minimum recommended cable type for FDDI (Fiber Distributed Data Interface) is 62.5/125 micron multimode fiber optic cable.That means the core is 62.5 microns and the core with surrounding cladding is a total of 125 microns.

    • The core specifications for step-index and graded-index multimode cables range from 50 to 1,000 microns.
    • The cladding diameter for step mode cables ranges from 125 to 1,050 microns.
    • The core diameter for single-mode step cable is 4 to 10 microns, and the cladding diameter is from 75 to 125 microns.
    Choosing the right Optic Fiber Glass Type/ Fiber Mode.

     

    Indoor Vs. Outdoor Optic Fiber Cable Applications

    For  indoor applications, the jacketed fiber is generally enclosed, with a bundle of flexible fibrous polymer strength members like aramid (e.g. Twaron or Kevlar), in a lightweight plastic cover to form a simple cable. Each end of the cable may be terminated with a specialized optical fiber connector to allow it to be easily connected and disconnected from transmitting and receiving equipment.

    For outdoor applications or use in more strenuous environments, a much more robust cable construction is required. In loose-tube construction the fiber is laid helically into semi-rigid tubes, allowing the cable to stretch without stretching the fiber itself. This protects the fiber from tension during laying and due to temperature changes. Loose-tube fiber may be "dry block" or gel-filled. Dry block offers less protection to the fibers than gel-filled, but costs considerably less. Instead of a loose tube, the fiber may be embedded in a heavy polymer jacket, commonly called "tight buffer" construction. Tight buffer cables are offered for a variety of applications, but the two most common are "Breakout" and "Distribution".

    Breakout Cables normally contain a ripcord, two non-conductive dielectric strengthening members (normally a glass rod epoxy), an aramid yarn, and 3 mm buffer tubing with an additional layer of Kevlar surrounding each fiber. The ripcord is a parallel cord of strong yarn that is situated under the jacket(s) of the cable for jacket removal. Distribution Cables  have an overall Kevlar wrapping, a ripcord, and a 900 micrometer buffer coating surrounding each fiber. These fiber units are commonly bundled with additional steel strength members, again with a helical twist to allow for stretching.

    A critical concern in outdoor cabling is to protect the fiber from contamination by water. This is accomplished by use of solid barriers such as copper tubes, and water-repellent jelly or water-absorbing powder surrounding the fiber.

    Finally, the cable may be armored to protect it from environmental hazards, such as construction work or gnawing animals. Undersea cables are more heavily armored in their near-shore portions to protect them from boat anchors, fishing gear, and even sharks, which may be attracted to the electrical power that is carried to power amplifiers or repeaters in the cable.

    Modern cables come in a wide variety of sheathings and armor, designed for applications such as direct burial in trenches, dual use as power lines, installation in conduit, lashing to aerial telephone poles, submarine installation, and insertion in paved streets.

    To purchase your fiber cables, please click link below:

    Fiber Patch Cables

     

     

     

     

    Read more »
  • WDM Optical Networking Solutions

    COMPUFOX offers a number of  WDM Optical Networking solutions which allow transport associated with a mix of services up to 100 GbE over dark fiber and WDM networks providing for the whole set of probably the most demanding CWDM and DWDM network infrastructure needs. Because the physical fiber optic cabling is expensive to implement for every single service separately, its capacity expansion using a WDM is a necessity.

    WDM Architectures

    WDM architecture

     

    WDM (Wavelength Division Multiplexing) is a concept that describes combination of several streams of data/storage/video or voice on the same physical fiber optic cable by utilizing several wavelengths (or frequencies) of light with each frequency carrying a different sort of data. There's two types of WDM architectures: CWDM (Coarse Wavelength Division Multiplexing) and DWDM (Dense Wavelength Division Multiplexing). CWDM systems typically provide 18 wavelengths, separated by 20 nm, from 1470nm to 1610nm according to ITU-T standard G.694.2. However, for different applications, there are different ITU-T standard to define the specific wave range and channels. Compared to CWDM, DWDM is defined in terms of frequencies. Some DWDM network systems provide up to 96 wavelengths, typically without any more than 0.4 nm spacing, roughly over the C-band range of wavelengths.

    CWDM Technology

    CWDM is proved to be the initial access point for many organizations due to its lower cost. Each CWDM wavelength typically supports as much as 2.5 Gbps and could be expanded to 10 Gbps support. This transfer rates are sufficient to aid GbE, Fast Ethernet or 1/2/4/8/10G Fibre Channel, along with other protocols. The CWDM is limited to 16 wavelengths and is typically deployed at networks as much as 80 km since optical amplifiers can't be used due to the large spacing between channels.

    DWDM Technology

    DWDM is a technology allowing high throughput capacity over longer distances commonly ranging between 44-88 channels/wavelengths and transferring data rates up to 100 Gbps per wavelength. Each wavelength can transparently have a wide range of services. The channel spacing from the DWDM solutions is defined by the ITU standards and can range from 50 GHz and 100 GHz (the most widely used today) to 200 GHz. DWDM systems can provide up to 96 wavelengths (at 50 GHz) of mixed service types, and can transport to distances up to 3000 km by deploying optical amplifiers (e.g., DWDM EDFA) and dispersion compensators thus enhancing the fiber capacity with a factor of x100. Due to its more precise and stabilized lasers, the DWDM technology tends to be more expensive in the sub-10G rates, but is really a more appropriate solution and it is dominating for 10G service rates and above providing large capacity data transport and connectivity over long distances at affordable costs.

    Note: COMPUFOX WDM optical networking goods are designed to support both CWDM and DWDM technology by utilizing standards based pluggable  CWDM/DWDM Transceivers such as SFP, XFP and SFP. The technology used is carefully calculated per project and according to customer requirements of distance, capacity, attenuation and future needs.

    DWDM OVER CWDM NETWORK

    The main benefit of CWDM is the price of the optics that is typically 1 / 3 of the price of the equivalent DWDM optics. This difference in economic scale, the limited budget that lots of customers face, and typical initial requirements to not exceed 8 wavelengths, means that CWDM is a popular entry point for a lot of customers. With COMPUFOX WDM equipment, a customer can start with 8 CWDM wavelengths however grow by introducing DWDM wavelengths in to the mix, utilizing the existing fiber and maximizing roi. By utilizing CWDM and DWDM network systems or the mixture of thereof, carriers and enterprises are able to transport services as much as 100 Gbps of data.

    Typically CWDM solutions provide 8 wavelengths capability enabling the transport of 8 client interfaces over the same fiber. However, the relatively large separation between your CWDM wavelengths allows growth of the CWDM network with an additional 44 wavelengths with 100 GHz spacing utilizing DWDM technology, thus expanding the present infrastructure capability and making use of the same equipment included in the integrated solution.

    Fiberstore

    Additionally, the normal CWDM spectrum supports data transport rates as high as 4.25 Gbps, while DWDM is utilized more for large capacity data transport needs as high as 100 Gbps. By mapping DWDM channels inside the CWDM wavelength spectrum as demonstrated below, higher data transport capacity on the same fiber optic cable is possible without any requirement for changing the existing fiber infrastructure between the network sites. As demonstrated through the figure beside, CWDM occupies the following ITU channels: 1470 nm, 1490 nm, 1510 nm, 1530 nm, 1550 nm, 1570 nm, 1590 nm, and 1610 nm, each separated from the other by 20 nm. COMPUFOX can insert into the of the 4 CWDM wavelengths (1530 nm,1550 nm,1570 nm and 1590 nm), a set of additional 8 wavelength of DWDM separated from one another by only 0.1 nm. By doing so up to 4 times, the CWDM network capability can easily expand by up to 28 additional wavelengths.

    The other figure below further demonstrates in detail the expansion capabilities via the DWDM spectrum. As seen below, just one outgoing and incoming wavelength of the existing CWDM infrastructure can be used for 8 DWDM channels multiplexing in to the original wavelength. Since this DWDM over CWDM network solution is integrating the DWDM transponders, DWDM MUX/DeMUX and EDFA (optical amplifier if needed), the entire solution is delivered simply by adding a really compact 1U unit. This expansion is achieved with no service interruption to the remaining network services, or to the data, and with no need to change or replace any of the working CWDM infrastructures.

    Fiberstore

    Advantages of COMPUFOX WDM Optical Networking Solutions

    COMPUFOX CWDM and DWDM network equipment provides the following advantages:
     
    Low-cost initial setup with targeted future growth path.
    Easy conversion and upgrade capabilities up to 44 wavelengths
    Easy upgrade to support 10G, 40G and 100G services
    Seamless, non traffic effective network upgrades
    Reliable, secure, and standards based architecture
    Easy to install and maintain
    Full performance monitoring
     

    With COMPUFOX compact CWDM solutions, you could get all of the above benefits and much more (such as remote monitoring and setup, integrated amplifiers, protection capabilities, and integration with 3rd party networking devices, etc.) inside a cost effective 1U unit, enabling you to expand as you grow, and utilize your financial as well as physical resources towards the maximum.

    To purchase your CWDM and DWDM transceivers, please click on the links below:

     

    Read more »
  • IoT devices will overtake mobile by 2018 with Europe leading the way – Ericsson

    By Scott Bicheno            Telecoms.com

    The latest Ericsson Mobility Report forecasts such rapid growth in the number of global IoT devices that they will overtake mobile phones as the largest category of connected device by 2018. Ericsson reckons Western Europe will be the biggest growth driver for IoT devices, forecasting a 5x increase by 2021. This won’t necessarily be the result of a greater appetite for IoT by European consumers, however, with Ericsson saying directives such as eCall for cars and smart meters compelling the continent to increase its number of connected devices. “IoT is now accelerating as device costs fall and innovative applications emerge,” said Rima Qureshi, Chief Strategy Officer at Ericsson. “From 2020, commercial deployment of 5G networks will provide additional capabilities that are critical for IoT, such as network slicing and the capacity to connect exponentially more devices than is possible today.” While the majority of IoT devices will be connected via non-cellular means (presumably wired or wifi), cellular IoT devices are forecasts to be the fastest growing category. Ericsson reckons a major reason for that growth will be 3GPP standardization of cellular IoT technologies, by which it’s presumably referring to NB-IoT. Other notable findings from the latest report include the fact that global smartphone subscriptions are expected to overtake those of basic phones in Q3 of this year and that the use of cellular data for smartphone video has doubled among teens in the past year, in contrast to a significant fall in the amount of time they spend watching traditional TV. Additionally the first devices supporting 1 Gbps LTE download speeds are expected later this year. Lastly Ericsson used the report to bring attention to the need to harmonise 5G spectrum in the frequencies above those currently licensed for mobile but below the 24 GHz+ range that was addressed at WRC-15, including better accommodation for microwave backhaul. It said the 3.1-4.2 GHz range is considered essential for early deployments of 5G and offered the chart below to illustrate how un-harmonised the global microwave backhaul picture currently is.

    Read more »
  • Ethernet Passive Optical Network Tutorial

    EPON is a PON-based network that carries data traffic encapsulated in Ethernet frames. Unlike other PON technologies which are based on the ATM standard, it uses a standard 8b/10b line coding and operates at standard Ethernet speed. This lets you utilize the economies-of-scale of Ethernet, and provides simple, easy-to-manage connectivity to Ethernet-based, IP equipment, both at the customer premises and at the central office.

    EPON Network Structure

    A typical EPON system is composed of OLT, ONU, and ODN (Figure 1).

    EPON Network Structure
    Figure 1. EPON Network Structure

    The OLT(Optical Line Terminal)resides in the Central Office (CO) and connects the optical network to the metropolitan-area network or wide-area network, also known as the backbone or long-haul network. OLT is both a switch or router and a multi-service platform which provides EPON-oriented optical interfaces. Besides the network assembling and access functions, OLT could also perform bandwidth assignments, network security and management configurations according to the customers’ different QoS/SLA requirements.

    The ONU(Optical Network Unit)is located either at the end-user location or at the curb and provides optical interfaces which are connected to the OLT and service interfaces at users’ side such as voice, data and video.

    The ODN(Optical Distributed Network)is an optical distribution network and is mainly composed of one or more passive optical splitters which connects the OLT and ONU. Its function is to split downstream signal from one fiber into several fibers and combine optical upstream signals from multiple fibers into one. Optical splitter is a simple device which needs no power and could work in an all-weather environment. The typical splitters have a splitting ratio of 2, 4, 8, 16 or 32 and be connected to each other. The longest distance the ODN could cover is 20 km.

    EPON Downlink and Uplink Technology

    In an EPON the process of transmitting data downstream from the OLT to multiple ONUs is fundamentally different from transmitting data upstream from multiple ONUs to the OLT.

    In the downstream direction, Ethernet frames transmitted by the OLT pass through a 1:N passive splitter and reach each ONU. N is typically between 4 and 64. This behavior is similar to a shared-medium network. Because Ethernet is broadcast by nature, in the downstream direction (from network to user), it fits perfectly with the Ethernet PON architecture: packets are broadcast by the OLT and extracted by their destination ONU based on the media-access control (MAC) address (Figure 2).

    Downstream Traffic in EPON
    Figure 2. Downstream Traffic in EPON

    In the upstream direction, due to the directional properties of a passive optical combiner, data frames from any ONU will only reach the OLT, and not other ONUs. In that sense, in the upstream direction, the behavior of EPON is similar to that of a point-to-point architecture. However, unlike in a true point-to-point network, in EPON data frames from different ONUs transmitted simultaneously still may collide. Thus, in the upstream direction (from users to 13 network) the ONUs need to employ some arbitration mechanism to avoid data collisions and fairly share the fiber-channel capacity (Figure 3).

    Upstream Traffic in EPON
    Figure 3. Upstream Traffic in EPON

    EPON and ADSL Comparison

    The requirement of bandwidth is increasing crazily with the incoming of digital age. Therefore the current high speed copper cable ADSL (Asymmetric Digital Subscriber Line) cannot meet our needs longer. The bandwidth of ADSL is limited to only a few megabit per second and the upstream and downstream bandwidth are not equal either. However, optical fiber has larger bandwidth and superior transmission capability which reaches gigabit per second. Hence, optical fiber used in access network is the future trend. And since Ethernet is low cost, uncomplicated widely-used in current network, and its application is very popular nowadays. So it is not hard to see that it is feasible and economical to combine them together. EPON technology combines a mature Ethernet technology and high-bandwidth PON technology, which is an ideal access method to achieve integrated services. In the future, highbandwidth business will surely drive up existing EPON which has the rate of 1.25Gbps in both the downstream and upstream directions.

    EPON Technical Advantages

    EPONs are simpler, more efficient, and less expensive than alternate multiservice access solutions. Key advantages of EPONs include the following:

    Higher bandwidth: up to 1.25 Gbps symmetric Ethernet bandwidthLower costs: lower up-front capital equipment and ongoing operational costsMore revenue: broad range of flexible service offerings means higher revenues

     

    With the growing of EPON technology, interaction standards and EPON devices, EPON has entered the large scale application phase driven by the huge market demands. EPON is fit for the access market which is at the end of the fibers and which has a certain density and these markets include FTTH, FTTP, FTTB, FTTN etc.

    EPON becomes a very economical and effective broadband access solution because of its predominance in equipment investment and also the operations, maintenance and etc. It could be said that the EPON technology has become the developing direction of access network’s technologies in the future as an ideal solution for FTTH.

    Read more »
  • Basics of Fiber Optic Splicing

    Fiber Optics Splicing is becoming  more and more a common skill requirement for cabling technicians. A fiber optic splice is defined by the fact that it gives a permanent or relatively permanent connection between two fiber optic cables. Fiber optic cables might have to be spliced together for a number of reasons—for example, to create a link of a particular length, or to repair a broken cable or connection. As fiber optic cables are generally only manufactured in lengths up to about 5 km, when lengths of 10 km are required, for example, then it is necessary to splice two lengths together to make a permanent connection.

    Classification of Techniques Used for Optical Fiber Splicing

    Mechanical splices
    The mechanical splices are normally used when splices need to be made quickly and easily. Mechanical fiber optic splices can take as little as five minutes to make, although the level of light loss is around ten percent. However this level of better than that which can be obtained using a connector. Some of the sleeves for mechanical fibre optic splices are advertised as allowing connection and disconnection. In this way a mechanical splice may be used in applications where the splice may be less permanent.

     

    Fusion splices
    This type of connection is made by fusing or melting the two ends together. This type of splice uses an electric arc to weld two fiber optic cables together and it requires specialised equipment to perform the splice. Fusion splices offer a lower level of loss and a high degree of permanence. However they require the use of the expensive fusion splicing equipment.

    Mechanisms of Light Loss at Optical Fiber Joint

    When joining optical fibers, the opposed cores must be properly aligned. Optical fiber splice loss occurs mostly in the following manner.

    Poor concentricity
    Poor concentricity of joined optical fibers causes a splice loss. In the case of general purpose single-mode fibers, the value of splice loss is calculated roughly as the square of the amount of misalignment multiplied by 0.2. (For example, if the light source wavelength is 1310 nm, misalignment by 1 µm results in approximately 0.2 dB of loss.)

    Poor concentricity
    Axial run-out
    A splice loss occurs due to an axial run-out between the light axes of optical fibers to be joined. For example, it is necessary to avoid an increased angle at fiber cut end when using an optical fiber cleaver before fusion splicing, since such an angle can result in splicing of optical fibers with run-out.

    Axial run-out
    Gap
    An end gap between optical fibers causes a splice loss. For example, if optical fiber end faces are not correctly butt-joined in mechanical splicing, a splice loss.
     
    An end gap between optical fibers
    Reflection
    An end gap between optical fibers results in 0.6 dB of return loss at the maximum due to the change in refractive index from the optical fiber to the air. In addition, the whole optical fiber ends should be cleaned because loss can also occur due to dirt between optical fiber ends.

    Classification and Principles of Fusion Splices

    Fusion splicing is classified into the two methods, as follows:

    Core alignment

    Optical fiber cores observed with a microscope are positioned with the help of image processing so that they are concentrically aligned. Then, an electric arc is applied to the fiber cores. The fusion splicer used has cameras for observation and positioning in two directions.

    Fs core_alignment.jpg

    Stationary V-groove alignment

    This fusion splicing method uses V-grooves produced with high precision to position and orient optical fibers and utilizes the surface tension of melted optical fibers for alignment effects (cladding alignment). Splices made by this method achieve low loss thanks to the recent advancement of optical fiber production technology, which has improved the dimensional accuracy regarding the placement of core. This method is primarily used for splicing a multi-fiber cable in a single action.

    Fs V-groove.jpg
     

    Tips for Better Splices:

    1. Thoroughly and frequently clean your splicing tools. When working with fiber, keep in mind that particles not visible to the naked eye could cause tremendous problems when working with fiber optics. "Excessive" cleaning of your fiber and tools will save you time and money down the road.
     
    2. Properly maintain and operate your cleaver. The cleaver is your most valuable tool in fiber splicing. Within mechanical splicing you need the proper angle to insure proper end faces or too much light escaping into the air gaps between the two fibers will occur. The index matching gel will eliminate most of the light escape but cannot overcome a low quality cleave. You should expect to spend around $200 to $1,000 for a good quality cleaver suitable for mechanical splicing.
     
    For Fusion splicing, you need an even more precise cleaver to achieve the exceptional low loss (0.05 dB and less). If you have a poor cleave the fiber ends might not melt together properly causing light loss and high reflection problems. Expect to pay $1,000 to $4,000 for a good cleaver to handle the precision required for fusion splicing. Maintaining your cleaver by following manufacturer instructions for cleaning as well as using the tool properly will provide you with a long lasting piece of equipment and ensuring the job is done right the first time.
     
    3. Fusion parameters must be adjusted minimally and methodically (fusion splicing only). If you start changing the fusion parameters on the splicer as soon as there is a hint of a problem you might lose your desired setting. Dirty equipment should be your first check and them continue with the parameters. Fusion time and fusion current are the two key factors for splicing. Different variables of these two factors can produce the same splice results. High time and low current result in the same outcome as high current and low time. Make sure to change one variable at a time and keep checking until you have found the right fusion parameters for your fiber type.
    Read more »
RSS