telecomvideos.com
Welcome
Login / Register

Most Popular Articles


  • COMPUFOX SFP+ Direct Attach Copper Cables Solution

    Overview
    SFP+ Direct Attach Copper Cable, also known as Twinax Cable, is an SFP+ cable assembly used in rack connections between servers and switches. It consists of a high speed copper cable and two SFP+ copper modules. The SFP+ copper modules allow hardware manufactures to achieve high port density, configurability and utilization at a very low cost and reduced power budget.

    Direct Attach Cable assemblies are a high speed, cost-effective alternative to fiber optic cables in 10Gb Ethernet, 8Gb Fibre Channel and InfiniBand applications. They are suitable for short distances, making them ideal for highly cost-effective networking connectivity within a rack and between adjacent racks. They enable hardware OEMs and data center operators to achieve high port density and configurability at a low cost and reduced power requirement.

    Compufox SFP+ copper cable assemblies meet the industry MSA for signal integrity performance. The cables are hot-removable and hot-insertable: You can remove and replace them without powering off the switch or disrupting switch functions. A cable comprises a low-voltage cable assembly that connects directly into two SFP+ ports, one at each end of the cable. The cables use high-performance integrated duplex serial data links for bidirectional communication and are designed for data rates of up to 10 Gbps.

    Types of SFP+ Direct Attach Copper Cables

    SFP+ Direct Attach Copper Cable assemblies generally have two types which are Passive and Active versions.

    SFP+ Passive Copper Cable
    SFP+ passive copper cable assemblies offer high-speed connectivity between active equipment with SFP+ ports. The passive assemblies are compatible with hubs, switches, routers, servers, and network interface cards (NICs) from leading electronics manufacturers like Cisco, Juniper, etc.
     
    SFP+ Active Copper Cable
    SFP+ active copper cable assemblies contain low power circuitry in the connector to boost the signal and are driven from the port without additional power requirements. The active version provides a low cost alternative to optical transceivers, and are generally used for end of row or middle of row data center architectures for interconnect distances of up to 15 meters.

     

    Applications of SFP+ Direct Attach Copper Cables

    -Networking – servers, routers and hubs
    -Enterprise storage
    -Telecommunication equipment
    -Network Interface Cards (NICs)
    -10Gb Ethernet and Gigabit Ethernet (IEEE802.3ae)
    -Fibre Channel over Ethernet: 1, 2, 4 and 8G
    -InfiniBand standard SDR (2.5Gbps), DDR (5Gbps), and QDR (10Gbps)
    -Serial data transmission
    -High capacity I/O in Storage Area Networks, Network Attached Storage, and Storage Servers
    -Switched fabric I/O such as ultra high bandwidth switches and routers
    -Data center cabling infrastructure
    -High density connections between networking equipment

     

    Compufox SFP+ Direct Attach Copper Cables Solution

    Compufox SFP+ twinax copper cables are avaliable with custom version and brand compatible version. All of them are 100% compatible with major brands like Cisco, HP, Juniper, Enterasys, Extreme, H3C and so on. If you want to order high quality compatible SFP+ cables and get worldwide delivery, we are your best choice.

    For instance, our compatible Cisco SFP+ Copper Twinax direct-attach cables are suitable for very short distances and offer a cost-effective way to connect within racks and across adjacent racks. We can provide both passive Twinax cables in lengths of 1, 3 and 5 meters, and active Twinax cables in lengths of 7 and 10 meters. (Tips: The lengths can be customized up to the customers' requirements.)

    Features
    -1m/3m/5m/7m/10m/12m available
    -RoHS Compatible
    -Enhanced EMI suppression
    -Low power consumption
    -Compatible to SFP+ MSA
    -Hot-pluggable SFP 20PIN footprint
    -Parallel pair cable
    -24AWG through 30AWG cable available
    -Data rates backward compatible to 1Gbps
    -Support serial multi-gigabit data rates up to 10Gbps
    -Support for 1x, 2x, 4x and 8x Fibre Channel data rates
    -Low cost alternative to fiber optic cable assemblies
    -Pull-to-release retractable pin latch
    -I/O Connector designed for high speed differential signal applications
    -Temperature Range: 0-70°C
    -Passive and Active assemblies available (Active Version: Low Power Consumption: < 0.5W Power Supply: +3.3V)

     

    FAQ of Compufox SFP+ Direct Attach Copper Cables

    Q: What are the performance requirements for the cable assembly?
    A: Our SFP+ copper passive and active cable assemblies meet the signal integrity requirements defined by the industry MSA SFF-8431. We can custom engineer cable assemblies to meet the requirements of a customer’s specific system architecture.

    Q: Are passive or active cable assemblies required?
    A: Passive cables have no signal amplification in the assembly and rely on host system Electronic Dispersion Compensation (EDC) for signal amplification/equalization. Active cable assemblies have signal amplification and equalization built into the assembly. Active cable assemblies are typically used in host systems that do not employ EDC. This solution can be a cost savings to the customer.

    Q: What wire gauge is required?
    A: We offer SFP+ cable assemblies in wire gauges to support customers' specific cable routing requirements. Smaller wire gauges results in reduced weight, improved airflow and a more flexible cable for ease of routing.

    Q: What cable lengths are required?
    A: Cable length and wire gauge are related to the performance characteristics of the cable assembly. Longer cable lengths require heavier wire gauge, while shorter cable lengths can utilize a smaller gauge cable.

    For all you SFP+ Direct attach cables, please see link below. We carry compatible cables for most major brands.

    http://www.compufox.com/SFP_Cables_s/337.htm

        

    Read more »
  • Fiber Optic Overview

    Fiber Optic Communication - The Future Of Networking & Data Transmission

    Fiber optic communication is a method of transmitting information from one place to another by sending pulses of light through an optical fiber. The light forms an electromagnetic carrier wave that is modulated to carry information.

    First developed in the 1970s, fiber-optic communication systems have revolutionized the telecommunications industry and have played a major role in the advent of the Information Age. Because of its advantages over electrical transmission, optical fibers have largely replaced copper wire communications in core networks. Optical fiber is used by many telecommunications companies to transmit telephone signals, Internet communication, and cable television signals. Researchers have reached internet speeds of over 100 petabits per second using fiber-optic communication.

    Fiber's advantages has led to its use as the backbone of all of today's communications, telecom, Internet, CATV, etc. - even wireless, where towers are connected on fiber and antennas are using fiber up the towers.

    Fiber Communication Example

     

    Optical Fiber - The Better Solution

    Fiber vs. Copper. Fiber is the better solution!

    This photo from the infancy of fiber optics (to the right) was used to illustrate that one tiny optical fiber could carry more communications signals than a giant copper cable. Today one single mode fiber could carry the same amount of communications as 1000 of those old copper cables!

    Fiber offers thousands of times more bandwidth than copper cables and can go more than 1000 times further before needing repeaters - both of which contribute to the immense economic advantage of fiber optics over copper. You can do a similar analysis for using wireless transmission also, but wireless is limited by the available wireless spectrum which is overcrowded because of everyone's desire to use more mobile devices.

    Why Convert From Copper Cable To Fiber Optic Cable?

    If you need some convincing before you make your first fiber optic cable purchase keep the following facts in mind.

    CheckOptical Fiber - Much More Efficient & Secure

    Fiber optic cable operates much more efficiently and is more secure than traditional copper cabling. Fiber can transmit far more information over greater distance and with a higher clarity while offering a more secure connection. Fiber optic cable is resistant to electromagnetic interference and generates no radiation of its own. This point is important in locations where high levels of security must be maintained. Copper wire radiates energy that can be monitored. In contrast, taps in  Fiber optic cable  Fiber  are easily detected. Copper cable, is also subject to problems with attenuation, capacitance, and crosstalk.

    CheckOptical Fiber - Does Not Require Grounding

    Since fiber is made of glass, which is a bad electrical conductor, it does not require grounding and shields itself from other electrical interference. Fiber cables can be run near electrical cables without fear that it will weaken or interrupt the signal.

    CheckOptical Fiber - Corrosion Resistant

    Fiber optic cable does not corrode and is not as sensitive to water or chemicals. This means you can safely run fiber cable in direct contact with dirt or in close proximity to chemicals (with the proper outer jacket materials).

    CheckOptical Fiber - The Safer Choice

    Since fiber is not a good conductor of electricity, an installer or user will be safe from electrocution if there is a break in the outer jacket and the fiber is exposed.

     

    How Fiber Optic Communication Works

    The process of communicating using fiber-optics involves the following basic steps: Creating the optical signal involving the use of a transmitter, relaying the signal along the fiber, ensuring that the signal does not become too distorted or weak, receiving the optical signal, and converting it into an electrical signal.

    Fiber (or fibre) consists of a strand of pure glass a little larger than a human hair. Fiber optic cable employs photons and pulsing laser light for the transmission of digital signals. Photons pass through the glass with negligible resistance. As light passes through the cable, its rays bounce off the cladding in different ways as shown below. The optic core of fiber optic cable is pure silicon dioxide. The electronic 1s and 0s of computers are converted to optically coded 1s and 0s. A light-emitting diode on one end of the cable then flashes those signals down the cable. At the other end, a simple photodetector collects the light and converts it back to electrical signals for transmission over copper cable networks.

    Fiber light source and transmission illustartion.

    Step index multimode was the first fiber design but is too slow for most uses, due to the dispersion caused by the different path lengths of the various modes. Step index fiber is rare - only POF uses a step index design today.

    Graded index multimode fiber uses variations in the composition of the glass in the core to compensate for the different path lengths of the modes. It offers hundreds of times more bandwidth than step index fiber - up to about 2 gigahertz.

    Singlemode fiber shrinks the core down so small that the light can only travel in one ray. This increases the bandwidth to almost infinity - but it's practically limited to about 100,000 gigahertz - that's still a lot!

     

    Optic Fiber Cable Construction

    Optic Fiber Cable Structure.

     

    Optical fiber consists of a core and a cladding layer, selected for total internal reflection due to the difference in the refractive index between the two. In practical fibers, the cladding is usually coated with a layer of acrylate polymer or polyimide. This coating protects the fiber from damage but does not contribute to its optical waveguide properties.

    Individual coated fibers (or fibers formed into ribbons or bundles) then have a tough resin buffer layer and/or core tube(s) extruded around them to form the cable core. Several layers of protective sheathing, depending on the application, are added to form the cable.

    Rigid fiber assemblies sometimes put light-absorbing ("dark") glass between the fibers, to prevent light that leaks out of one fiber from entering another. This reduces cross-talk between the fibers, or reduces flare in fiber bundle imaging applications.

    A “dopant” is added to the core to actually make it less pure than the cladding. This changes the way the core transmits light. Because the cladding has different light properties than the core, it tends to keep the light within the core. Because of these properties, fiber optic cable can be bent around corners and can be extended over distances of up to 100 miles.

    A typical laser transmitter can be pulsed billions of times per second. In addition, a single strand of glass can carry light in a number of wavelengths (colors), meaning that the data-carrying capacity of fiber optic cable is potentially thousands of times greater than copper cable.

     

    Types Of Fiber Optic Cable

    • Plastic cable, which works only over a few meters, is inexpensive and works with inexpensive components.
    • Plastic-coated silica cable offers better performance than plastic cable at a little more cost.
    • Single-index monomode fiber cable is used to span extremely long distances. The core is small and provides high bandwidth at long distances. Lasers are used to generate the light signal for single-mode cable. This cable is the most expensive and hardest to handle, but it has the highest bandwidths and distance ratings.
    • Step-Index multimode cable has a relatively large diameter core with high dispersion characteristics. The cable is designed for the LAN environment and light is typically generated with a LED (light-emitting diode).
    • Graded-index multimode cable has multiple layers of glass that contain dispersions enough to provide increases in cable distances.

    Cable specifications list the core and cladding diameters as fractional numbers. For example, the minimum recommended cable type for FDDI (Fiber Distributed Data Interface) is 62.5/125 micron multimode fiber optic cable.That means the core is 62.5 microns and the core with surrounding cladding is a total of 125 microns.

    • The core specifications for step-index and graded-index multimode cables range from 50 to 1,000 microns.
    • The cladding diameter for step mode cables ranges from 125 to 1,050 microns.
    • The core diameter for single-mode step cable is 4 to 10 microns, and the cladding diameter is from 75 to 125 microns.
    Choosing the right Optic Fiber Glass Type/ Fiber Mode.

     

    Indoor Vs. Outdoor Optic Fiber Cable Applications

    For  indoor applications, the jacketed fiber is generally enclosed, with a bundle of flexible fibrous polymer strength members like aramid (e.g. Twaron or Kevlar), in a lightweight plastic cover to form a simple cable. Each end of the cable may be terminated with a specialized optical fiber connector to allow it to be easily connected and disconnected from transmitting and receiving equipment.

    For outdoor applications or use in more strenuous environments, a much more robust cable construction is required. In loose-tube construction the fiber is laid helically into semi-rigid tubes, allowing the cable to stretch without stretching the fiber itself. This protects the fiber from tension during laying and due to temperature changes. Loose-tube fiber may be "dry block" or gel-filled. Dry block offers less protection to the fibers than gel-filled, but costs considerably less. Instead of a loose tube, the fiber may be embedded in a heavy polymer jacket, commonly called "tight buffer" construction. Tight buffer cables are offered for a variety of applications, but the two most common are "Breakout" and "Distribution".

    Breakout Cables normally contain a ripcord, two non-conductive dielectric strengthening members (normally a glass rod epoxy), an aramid yarn, and 3 mm buffer tubing with an additional layer of Kevlar surrounding each fiber. The ripcord is a parallel cord of strong yarn that is situated under the jacket(s) of the cable for jacket removal. Distribution Cables  have an overall Kevlar wrapping, a ripcord, and a 900 micrometer buffer coating surrounding each fiber. These fiber units are commonly bundled with additional steel strength members, again with a helical twist to allow for stretching.

    A critical concern in outdoor cabling is to protect the fiber from contamination by water. This is accomplished by use of solid barriers such as copper tubes, and water-repellent jelly or water-absorbing powder surrounding the fiber.

    Finally, the cable may be armored to protect it from environmental hazards, such as construction work or gnawing animals. Undersea cables are more heavily armored in their near-shore portions to protect them from boat anchors, fishing gear, and even sharks, which may be attracted to the electrical power that is carried to power amplifiers or repeaters in the cable.

    Modern cables come in a wide variety of sheathings and armor, designed for applications such as direct burial in trenches, dual use as power lines, installation in conduit, lashing to aerial telephone poles, submarine installation, and insertion in paved streets.

    To purchase your fiber cables, please click link below:

    Fiber Patch Cables

     

     

     

     

    Read more »
  • WDM Optical Networking Solutions

    COMPUFOX offers a number of  WDM Optical Networking solutions which allow transport associated with a mix of services up to 100 GbE over dark fiber and WDM networks providing for the whole set of probably the most demanding CWDM and DWDM network infrastructure needs. Because the physical fiber optic cabling is expensive to implement for every single service separately, its capacity expansion using a WDM is a necessity.

    WDM Architectures

    WDM architecture

     

    WDM (Wavelength Division Multiplexing) is a concept that describes combination of several streams of data/storage/video or voice on the same physical fiber optic cable by utilizing several wavelengths (or frequencies) of light with each frequency carrying a different sort of data. There's two types of WDM architectures: CWDM (Coarse Wavelength Division Multiplexing) and DWDM (Dense Wavelength Division Multiplexing). CWDM systems typically provide 18 wavelengths, separated by 20 nm, from 1470nm to 1610nm according to ITU-T standard G.694.2. However, for different applications, there are different ITU-T standard to define the specific wave range and channels. Compared to CWDM, DWDM is defined in terms of frequencies. Some DWDM network systems provide up to 96 wavelengths, typically without any more than 0.4 nm spacing, roughly over the C-band range of wavelengths.

    CWDM Technology

    CWDM is proved to be the initial access point for many organizations due to its lower cost. Each CWDM wavelength typically supports as much as 2.5 Gbps and could be expanded to 10 Gbps support. This transfer rates are sufficient to aid GbE, Fast Ethernet or 1/2/4/8/10G Fibre Channel, along with other protocols. The CWDM is limited to 16 wavelengths and is typically deployed at networks as much as 80 km since optical amplifiers can't be used due to the large spacing between channels.

    DWDM Technology

    DWDM is a technology allowing high throughput capacity over longer distances commonly ranging between 44-88 channels/wavelengths and transferring data rates up to 100 Gbps per wavelength. Each wavelength can transparently have a wide range of services. The channel spacing from the DWDM solutions is defined by the ITU standards and can range from 50 GHz and 100 GHz (the most widely used today) to 200 GHz. DWDM systems can provide up to 96 wavelengths (at 50 GHz) of mixed service types, and can transport to distances up to 3000 km by deploying optical amplifiers (e.g., DWDM EDFA) and dispersion compensators thus enhancing the fiber capacity with a factor of x100. Due to its more precise and stabilized lasers, the DWDM technology tends to be more expensive in the sub-10G rates, but is really a more appropriate solution and it is dominating for 10G service rates and above providing large capacity data transport and connectivity over long distances at affordable costs.

    Note: COMPUFOX WDM optical networking goods are designed to support both CWDM and DWDM technology by utilizing standards based pluggable  CWDM/DWDM Transceivers such as SFP, XFP and SFP. The technology used is carefully calculated per project and according to customer requirements of distance, capacity, attenuation and future needs.

    DWDM OVER CWDM NETWORK

    The main benefit of CWDM is the price of the optics that is typically 1 / 3 of the price of the equivalent DWDM optics. This difference in economic scale, the limited budget that lots of customers face, and typical initial requirements to not exceed 8 wavelengths, means that CWDM is a popular entry point for a lot of customers. With COMPUFOX WDM equipment, a customer can start with 8 CWDM wavelengths however grow by introducing DWDM wavelengths in to the mix, utilizing the existing fiber and maximizing roi. By utilizing CWDM and DWDM network systems or the mixture of thereof, carriers and enterprises are able to transport services as much as 100 Gbps of data.

    Typically CWDM solutions provide 8 wavelengths capability enabling the transport of 8 client interfaces over the same fiber. However, the relatively large separation between your CWDM wavelengths allows growth of the CWDM network with an additional 44 wavelengths with 100 GHz spacing utilizing DWDM technology, thus expanding the present infrastructure capability and making use of the same equipment included in the integrated solution.

    Fiberstore

    Additionally, the normal CWDM spectrum supports data transport rates as high as 4.25 Gbps, while DWDM is utilized more for large capacity data transport needs as high as 100 Gbps. By mapping DWDM channels inside the CWDM wavelength spectrum as demonstrated below, higher data transport capacity on the same fiber optic cable is possible without any requirement for changing the existing fiber infrastructure between the network sites. As demonstrated through the figure beside, CWDM occupies the following ITU channels: 1470 nm, 1490 nm, 1510 nm, 1530 nm, 1550 nm, 1570 nm, 1590 nm, and 1610 nm, each separated from the other by 20 nm. COMPUFOX can insert into the of the 4 CWDM wavelengths (1530 nm,1550 nm,1570 nm and 1590 nm), a set of additional 8 wavelength of DWDM separated from one another by only 0.1 nm. By doing so up to 4 times, the CWDM network capability can easily expand by up to 28 additional wavelengths.

    The other figure below further demonstrates in detail the expansion capabilities via the DWDM spectrum. As seen below, just one outgoing and incoming wavelength of the existing CWDM infrastructure can be used for 8 DWDM channels multiplexing in to the original wavelength. Since this DWDM over CWDM network solution is integrating the DWDM transponders, DWDM MUX/DeMUX and EDFA (optical amplifier if needed), the entire solution is delivered simply by adding a really compact 1U unit. This expansion is achieved with no service interruption to the remaining network services, or to the data, and with no need to change or replace any of the working CWDM infrastructures.

    Fiberstore

    Advantages of COMPUFOX WDM Optical Networking Solutions

    COMPUFOX CWDM and DWDM network equipment provides the following advantages:
     
    Low-cost initial setup with targeted future growth path.
    Easy conversion and upgrade capabilities up to 44 wavelengths
    Easy upgrade to support 10G, 40G and 100G services
    Seamless, non traffic effective network upgrades
    Reliable, secure, and standards based architecture
    Easy to install and maintain
    Full performance monitoring
     

    With COMPUFOX compact CWDM solutions, you could get all of the above benefits and much more (such as remote monitoring and setup, integrated amplifiers, protection capabilities, and integration with 3rd party networking devices, etc.) inside a cost effective 1U unit, enabling you to expand as you grow, and utilize your financial as well as physical resources towards the maximum.

    To purchase your CWDM and DWDM transceivers, please click on the links below:

     

    Read more »
  • IoT devices will overtake mobile by 2018 with Europe leading the way – Ericsson

    By Scott Bicheno            Telecoms.com

    The latest Ericsson Mobility Report forecasts such rapid growth in the number of global IoT devices that they will overtake mobile phones as the largest category of connected device by 2018. Ericsson reckons Western Europe will be the biggest growth driver for IoT devices, forecasting a 5x increase by 2021. This won’t necessarily be the result of a greater appetite for IoT by European consumers, however, with Ericsson saying directives such as eCall for cars and smart meters compelling the continent to increase its number of connected devices. “IoT is now accelerating as device costs fall and innovative applications emerge,” said Rima Qureshi, Chief Strategy Officer at Ericsson. “From 2020, commercial deployment of 5G networks will provide additional capabilities that are critical for IoT, such as network slicing and the capacity to connect exponentially more devices than is possible today.” While the majority of IoT devices will be connected via non-cellular means (presumably wired or wifi), cellular IoT devices are forecasts to be the fastest growing category. Ericsson reckons a major reason for that growth will be 3GPP standardization of cellular IoT technologies, by which it’s presumably referring to NB-IoT. Other notable findings from the latest report include the fact that global smartphone subscriptions are expected to overtake those of basic phones in Q3 of this year and that the use of cellular data for smartphone video has doubled among teens in the past year, in contrast to a significant fall in the amount of time they spend watching traditional TV. Additionally the first devices supporting 1 Gbps LTE download speeds are expected later this year. Lastly Ericsson used the report to bring attention to the need to harmonise 5G spectrum in the frequencies above those currently licensed for mobile but below the 24 GHz+ range that was addressed at WRC-15, including better accommodation for microwave backhaul. It said the 3.1-4.2 GHz range is considered essential for early deployments of 5G and offered the chart below to illustrate how un-harmonised the global microwave backhaul picture currently is.

    Read more »
  • Qualcomm goes big on wifi and IoT with multiple chip launches

    By Tim Skinner        telecoms.com

    Qualcomm has announced new chips and technologies designed to boost domestic wifi coverage, at-home IoT connectivity, wearable tech capability and next generation broadband delivery.

    Starting off with domestic wifi coverage boosting, and Qualcomm launched a new family of 802.11ac platforms designed to optimise device wifi usage by intelligently allocating radio spectrum in the home. It says its new three radio solutions combine two 5 GHz radios and a 2.4 GHz radio to help improve connectivity; and its platform, used on new routers and repeaters, can appropriately dedicate radio in the legacy 2.4 GHz band to devices only compatible with the 802.11n standard. This, in theory, can alleviate congestion on domestic networks and ensure more bandwidth availability for devices compatible with the newer 802.11.ac band.

    Qualcomm says the self-organising features integrated into the new platform means it will become much easier to register and configure new devices on the network; while automatically allocating capacity for devices based on real-time conditions.

    “As people rely on their home network to support more devices accessing the internet and streaming media, Wi-Fi is being stretched to the limit,” said Gopi Sirineni, vice president of product management, Qualcomm Atheros, Inc. “We are changing the game with features designed to deliver the best possible Wi-Fi experiences and now, uniquely, we are driving those technologies into more cost-effective products to extend the benefits to a wider swath of consumers.”

    IoT is also in Qualcomm’s sights, as it unveiled a new chip set targeting low-power smart home devices. It says the QCA4012 chip brings dual band wifi, enhanced security, low power and small form factor for connected devices. Companion SDKs and services from partners Ayla, Exosite and Iota Labs include API interfaces and other tools to support IoT device and cloud integration.

    “IOTA Labs has developed cutting edge IoT solutions integrating Qualcomm Technologies’ latest products with the IOTA Labs platform,” said Amit Singh, director and co-founder, IOTA Labs. “IOTA Labs’s leading edge IoT platform and experience acts as an accelerator for clients to transform their offerings into leading smarter products and services with a lower cost of ownership.”

    The Snapdragon Wear 1100, included in the raft of announcements, joins the product line and targets consumer-led IoT products, including smart-accessories and wearable tech. Qualcomm says it has been designed to target  the wearable segment where a smaller size, longer battery life, smarter sensing, enhanced security. It also comes with a modem capable of LTE, wifi and Bluetooth support.

    “We are delighted to add Snapdragon Wear 1100 to our Snapdragon Wear family, thus making it easier for customers to develop connected wearables with targeted use cases such as kid and elderly tracking,” said Anthony Murray, SVP of IoT for Qualcomm Technologies. “We are actively working with the broader ecosystem to accelerate wearables innovation and are excited to announce a series of customer collaborations today.”

    Finally, Qualcomm also announced a fixed networking launch which it claims will help operators deliver up to 1 Gbps data rates on existing infrastructure up to 100 meters. The GigaDSL chipsets are intended to support gigabit data rates on existing telephone lines providing a high-speed extension for VDSL without losing spectrum capacity. It says existing infrastructure can be upgraded to the new processors without having to rip up the network and start again. The product line will become available from June for both fibre to the building and customer premises equipment.

    “With these new GigaDSL product offerings, we are able to meet carriers’ broadband goals, complementing fiber deployment in time for major events, such as the 2018 Winter Games in Korea and the 2020 Summer Games in Japan,” said Irvind Ghai, VP of product management at Qualcomm Atheros.

     

    Read more »
RSS